If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+64x-180=0
a = 4; b = 64; c = -180;
Δ = b2-4ac
Δ = 642-4·4·(-180)
Δ = 6976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6976}=\sqrt{64*109}=\sqrt{64}*\sqrt{109}=8\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{109}}{2*4}=\frac{-64-8\sqrt{109}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{109}}{2*4}=\frac{-64+8\sqrt{109}}{8} $
| 9-6(x-5)=30 | | x5−4=36x5-4=36 | | x+x-24=109 | | 5x+10x-8=180 | | 7h+8=4h+29 | | 3n-9=5n-19 | | 6n-2=(n-3) | | 5t^220t=0 | | 3n−9=5n−19 | | 7u-34=50 | | 3a-6=2a-2 | | h+42/9=6 | | z+12/8=3 | | 10(3x-1)=90x | | 50=8x-x+7 | | 2=b-83/6 | | 6v^2-60v=0 | | 1x/5=6 | | 5=d/2-5 | | x-0.15x=60 | | 20+1x=10+3x | | x-0.15=60 | | 8k+15=39 | | 8x^+2x-3=0 | | √3-2v+17=20 | | b+2b+5+8b-12=180 | | -12k+2k=-2k-13k-13 | | 3a+6+7a-9=180 | | 5=5(f-9) | | 8x+21=56 | | 8^+2x-3=0 | | h/8+74=82 |